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ATOMISTIC VISUALIZATION
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Department of Materials Science and Engineering,
Ohio State University, Columbus, Ohio, USA

Visualization plays a critical role in materials modeling. This is particu-
larly true for atomistic modeling, in which there is a large number of discrete
degrees of freedom (DOF): the positions of the atoms. Atomic resolution is
therefore the defining feature of atomistic visualization. This, however, does
not exclude the possibility of going up in scale – visualizing the coarse-grained
continuum fields, or going down – visualizing the electronic structure around
a particular atom or cluster of atoms, of a configuration if the need arises.

These discrete DOF in an atomistic simulation do not necessarily satisfy
any smoothness condition like the continuum fields. For example the recon-
structed atomic structure of a dislocation core in Si is not likely to be describ-
able by a formula or a series expansion. However, this does not mean that there
is no order in these DOF. Atomic-level order is ubiquitous in materials, even in
amorphous or disordered materials, even in liquids. Finding these order, quan-
tifying them, and then representing them in the best light are the tasks of atom-
istic visualization. Atomistic visualization is not merely a software engineering
problem, it is also inherently a physico-chemical and mechanics problem.

To appreciate the importance of atomistic visualization, one must recog-
nize that in a setup like a large-scale molecular dynamics (MD) simulation, it
is not infrequent that the DOF self-organize in ways that the investigator would
not have expected before the simulation is carried out. Thus, a main function
of atomistic simulation is discovering new structures, new kinetic pathways
and micro-mechanisms, with atomic resolution. Even though these discover-
ies often need to be taken with a grain of salt due to the present accuracy of
empirical interatomic potentials, large-scale simulation is nonetheless a unique
and tremendously powerful tool of identifying key structures and processes.
Once a structure or a process is clearly described and understood, it often can
be isolated and modeled with a much smaller number of atoms at the first-
principles level, allowing one to eventually select the most probable structure
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or process out of a catalog of possible low-energy structures or processes.
This surveying mission of large-scale simulation would be impossible without
efficient visualization, for the amount of data from a large-scale simulation is
truly enormous.

This article is organized as follows. First, a brief survey of the present state-
of-the-art in atomistic visualization is given, that includes both tool develop-
ment and work done using the tools. Special emphasis is put on public-domain
visualization tools that the author is familiar with. Then, the design philos-
ophy behind the free atomistic configuration viewer AtomEye is explained.
Finally, a recently developed characterization of local atomic structure called
the central symmetry parameter [27] is explained.

1. A Brief Survey of Molecular Visualization

At the time this article is written, the state-of-art in atomistic visualization
can be experienced in a movie that Farid Abraham et al. (IBM) made for a
one-billion atom MD simulation of work-hardening, with two notched dislo-
cation sources [1]. The MD simulation was performed for 200 000 time steps
on the 12-teraflop, 4096-node ASCI White supercomputer at LLNL, for four
days wall-clock time, which generated 25 terabytes of raw data. They were
compressed with 30× efficiency to less than 1 terabyte, which would still take
about 10 hard drives (weighs ∼1.2 lb each) to store. The movie was made in
the post-processing stage by Mark Duchaineau, a computer scientist (LLNL).
It has a resolution of 640×480, a file size of 66 megabytes, and lasts 46 s. In
terms of file size, the movie is less than a 1/100% of the raw data. Watching
the movie takes only a 1/100% of the time it takes the fastest computer in the
world to run the simulation. Yet, one gets a very good overview of what went
on in the simulation, that entail a plethora of dislocation nucleation, interaction
and dynamics, by just watching the movie. Thus, a main purpose of visualiza-
tion is condensation of information. A crucial trick that enables such high con-
densation rate of information or data is selective representation of atoms. That
is, one only renders “interesting” atoms near defects in the atomistic configu-
ration, in this case dislocations and cracks. The “uninteresting” atoms which
have bulk order are not rendered and do not cover up the field of view. Here,
the “interesting” atoms are determined by a local energy criterion. Later in the
article, we are going to illustrate alternative methods of distinguishing “inter-
esting” atoms using some geometrical criteria without knowing the particular
interatomic potential used.

As a side note, it was observed personally that the above movie never
fails to captivate the audience in seminars and lectures, whether they are exp-
erts or not. Thus, aside from sifting and compressing information, atomistic
visualization also lowers the barrier of entry for accessing the information.
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Century-old methods of scientific visualization such as graphing/charting are
still important as ever (they achieve even higher information compression
rate). But the new kinds of visualization that come with the Information Age,
in the forms of snapshots, movies/animations, and interactive navigation,
greatly complement and enhance the traditional methods.

Top-quality atomistic visualization such as above [1, 2] still require the
expertise of dedicated computer science professionals. They may also require
specialized hardware such as an Immersadesk or CAVE system [3, 4]. How-
ever, for day-to-day research, there is an array of visualization software avail-
able on personal computers. Commercial modeling packages such as Materials
Studio, CAChe, ChemOffice, HyperChem, Spartan, etc. come with powerful
visualization front ends, that usually include graphical user interface (GUI)-
driven atomic configuration builders as well. And there are also more special-
ized crystallographic software such as CrystalMaker. But here we are going to
focus on free software, or freeware, that are accessible to everyone.

Molscript [5] and Rasmol [6] are two pioneering freewares that have had
tremendous impact on visualization, beyond the field of molecular biology
from which they originated. According to the Institute for Scientific Infor-
mation (ISI), from 1991 to 2004 the Molscript paper [5] has been cited more
than 10 000 times, making it one of the most cited papers in science. Molscript
takes an input file, which specifies the 3-D coordinates of biomolecules and the
desired graphics state (such as viewpoint), and renders into publication-quality
schematics in vector image formats like PostScript, which can be directly
inserted into typesetting program such as LaTeX. Later, photorealistic raster-
ization program Raster3D [7, 8] and charge-density isosurface plotting pro-
gram CONSCRIPT [9] were developed that can work in unison with Molscript.
Similar to many present-day raytracing programs, Molscript, Raster3D and
CONSCRIPT run on the command line and are noninteractive. So, while the
qualities the configuration snapshots are excellent, they are less suitable as
a configuration navigation and surveying tool. Rasmol, on the other hand, is
designed with navigation in mind. One is able to rotate the configuration and
change the rendering state interactively. The Rasmol source code, which is
freely available starting from the early 1990s, implements advanced features
such as shared memory extension for local display, scripting interface, and
various fast rendering technique, and advances the knowledge-base of molecu-
lar visualization freeware. Other macromolecule visualization tools with
similar functions include the Swiss-PdbViewer (Deep View) [10, 11], and
MOLMOL [12].

It should be pointed out that there are many detailed differences between
molecular visualization of soft matter, specifically proteins, and atomistic visu-
alization of hard matter. For example, in modeling deformation of solids, one
can often use the perfect crystal as reference state. This means, in a visualiza-
tion scheme, collective modes or defects can often be identified by comparing
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with crystalline order atom by atom. Configuration changes in hard matter
such as defect nucleation and mobility are often accompanied by the break-
ing and reformation of stiff, nearest-neighbor covalent or metallic bonds. In
proteins, there is no crystalline reference state, and conformation changes are
usually accomplished by the breaking and reformation of softer, non-nearest-
neighbor bonds like hydrogen bonds. And while the concepts of local strain
and stress are still useful in proteins [13], quantification/visualization poses
perhaps a greater challenge. On the other hand, there are well-recognized
local orders in proteins such as α-helices, β-sheets, turns and loops, that do
not have direct analogies in hard matter, and require special representations
such as ribbons/thick tubes, arrows, and lines/thin tubes.

Historically, the Protein Data Bank (PDB) configuration file format [14]
and the Research Collaboratory for Structural Bioinformatics (RCSB) molecu-
lar structure database has been a major driving force behind promoting molec-
ular visualization and standardization. No such standards yet exist in materials
modeling. However, there are several good reasons not to use the PDB for-
mat to save one’s configurations and for information exchange in atomistic
modeling of hard matter, which are:

• Precision. PDB format has a fixed precision of 0.001 Å for storing the
atomic coordinates. While this is probably sufficient for proteins, for
which one usually models at around T = 300 K in solution so there is
plenty of thermal noise anyway, it is often not precise enough for hard
matter.
• Extensibility. Since PDB adopts a fix-line format, there is no standard and

supported way to add in new properties. For instance, there is no standard
option to store atomic velocities.
• Support for periodic boundary condition (PBC). It is very difficult to

coax the PDB format to robustly and consistently store atomic configura-
tions satisfying PBC, because the atomic coordinates are saved in direct
Cartesian x, y, z coordinates rather than dimensionless reduced coordi-
nates [15]. In order to effect an affine transformation on the supercell, for
instance, one needs to modify all atomic coordinates explicitly in PDB,
rather than just modifying the 3× 3 H-matrix [15].

An extensible, arbitrary-precision configuration file format (CFG) and its sup-
porting viewer AtomEye [16] is introduced in the next section, which provides
full support for PBC and is most suited for large-scale MD simulations.

We now turn to another area, quantum chemistry, which also had profound
influence on atomistic visualization. One deals with a smaller number of atoms
in one configuration, usually no more than a few hundred at present, but scalar
fields such as orbital wavefunctions need to represented besides the molecular
conformation. The pioneering freeware in this field is Molden [17], which
renders the orbital wavefunctions, charge density and electrostatic potential
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of molecules, as well as their relaxation dynamics, vibrational normal modes
and reaction pathways. It works well interactively, but also gives good quality
vector graph output for 2-D contours and 3-D isosurfaces. Another freeware
with similar functionalities is gOpenMol.

An excellent freeware for visualizing electronic structure in crystals is
XCrySDen [18, 19]. One can store the crystal structure plus an arbitrary num-
ber of scalar fields defined on a regular grid under PBC in the so-called XSF
format, which can be visualized, rotated and numerically manipulated interac-
tively. Isosurfaces and cut-plane contours of the scalar fields can be rendered
with a variety of colormap, transparency, and specularity options. Both the
onscreen display and the snapshots have outstanding quality, and the controls
are highly responsive. XCrySDen also has some tools for analyzing reciprocal-
space properties such as interactive selection of k-paths in the Brillouin zone
for band-structure plots, and visualization of the Fermi surface.

Presently, the most powerful and versatile freeware for visualizing molec-
ular dynamics simulation trajectories is perhaps VMD [20]. It is based on
OpenGL, with graphical user interfaces, but also a command line with full
scripting capabilities. There is even a special syntax for choosing subsets of
atoms for display (includes boolean operators, regular expressions, etc.).
Trajectories can be played back, analyzed and easily converted to movies.
Sterescopic display is fully supported. VMD can also display volumetric data
sets, including electron density maps, electron orbitals, potential maps, and
various types of user-generated volumetric data. They can be rendered using
“VolumeSlice” or “Isosurface” representations, each of which provides several
geometric rendering styles for viewing the data, varying isolevels, slice plane
position, etc. 1-D, 2-D, and 3-D textures can be applied onto molecular and
volumetric data representations to convey various types of information. VMD
also provides the ability to render molecular scenes using external programs
such as ray-tracing programs. This feature can be used to attain higher im-
age quality than that is possible using the built-in OpenGL rendering features.
There are also many special features for analyzing large biomolecular systems.

Compared to VMD, freeware such as AViz [21] and AtomEye [16], which
are dedicated to atomistic visualization of nonbiological systems, are more
lightweight. A good idea for beginners is to install and try all three freewares.
The design philosophy behind AtomEye [16] is introduced in the next section.

Aside from the specialized tools introduced above, there are general
visualization packages such as OpenDX and VTK, that are programmable and
extremely powerful. The python interface of VTK, for instance, has been
incorporated into Atomic Simulation Environment (ASE), an open-source
distribution of python scripts [22] that can wrap around several ab initio and
molecular mechanics engines (Dacapo, SIESTA, MMTK, etc.). The commer-
cial software package MATLAB is also a very good environment for data visu-
alization. Freeware in this direction include Gnuplot, Grace, Octave, and Scilab.
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2. Design of an Efficient Atomistic Configuration Viewer

AtomEye [16] is a memory-efficient and lightweight atomistic configura-
tion viewer, which nonetheless achieves high quality in the limited number of
things that it can do. It is based on the observation that when visualizing MD
simulation results, most often only the spheres and cylinders, representing the
atoms and bonds, need to be rendered in massive quantities. Therefore, spe-
cial subroutines were developed to render the spheres and cylinders as graphics
primitives, rather than as composites of polygons. This combined with area-
weighted anti-aliasing [23] greatly enhance AtomEye’s graphics quality. One
can also produce snapshots (in PNG, JPEG or EPS file formats) of a configura-
tion in the desired graphics state at arbitrary resolutions (like 2560×2560) that
are greater than the monitor display resolution, to obtain publication-quality
figures (Figs. 1–6). Making movie is straightforward with a set of sequentially
named configuration files.

AtomEye is an easy-to-use configuration navigator with full support for
PBC. The user can move the view frustum anywhere inside the atomic config-
uration (see Figs. 2, 4). This is done by defining an anchor point, which can be
the position of an atom, the center of a bond, or the center of mass of the ent-
ire configuration. Dragging the mouse up or down with the right mouse button

Figure 1. A strand of DNA, visualized in AtomEye.
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Figure 2. Inside a chiral single-walled carbon nanotube.

Figure 3. Dislocation emission in a two-dimensional bubble raft under a spherical indentor
[24]. The color encoding of atoms is by the auxiliary property of local atomistic von Mises
stress invariant.

pressed pulls the viewpoint away or closer from the anchor. Rotation is
always done such that the anchor position is invariant in the field of view. At
beginning, the anchor is taken to be the center of mass. This allows for global
view of the configuration by rotating with mouse or with arrow keys (see
below). When one right-clicks on an atom or a bond, the anchor is transferred
to that particular atom or bond. So if one is interested in a closer view of a
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Figure 4. A vacancy defect in silicon. Three-fold coordinated atoms are colored green, while
4-fold coordinated atoms are colored silver.

Figure 5. Cu nanocrystal configuration consisting of 424 601 atoms. Atom coloring is by
coordination number.
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Figure 6. Central symmetry color encoding showing intrinsic stacking faults bounded by
partial dislocations during indentation of Cu.

particular atomic local environment, one right-clicks on an atom or bond and
then drags the mouse down without releasing the right mouse button. To pull
away, simply right-click on a vacuum region and drag the mouse up without
releasing the right mouse button. One can always recover the center of mass
anchor by pressing key “w”.

Rotation by mouse movement is accomplished under the following con-
cepts: there is a glass sphere about half the viewport size hinged at the center
of the viewport. The configuration is “frozen” in the glass sphere and coro-
tates with it. After the rotation, there is a compensating translation if nec-
essary, to fix the anchor in the viewport. To rotate, one imagines putting a
finger on the glass sphere surface and move the fingertip, which is accom-
plished by left-clicking in the window and dragging the mouse without
releasing the left button. The remainder of the viewport comprises of a flat
glass surface parallel to the viewport, left-clicking and dragging which causes
the configuration to rotate clockwise or counterclockwise. By pressing the
arrow keys←,→, ↑,↓, and shift+↑,↓, the configuration can also be rotated
along three orthogonal axes. The rate of rotation is governed by the gearbox
value, that controls all rates of changes, and can be varied by pressing the
numeric keys 0–9. One can always recover the initial view frustum orientation
with x , y, z perfectly aligned, by pressing key “u”.
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At this point we need to explain the design of the CFG configuration file
format which AtomEye supports. (Though there is rudimentary support for
the PDB file format [14], PDB is not recommended. See the last section.) In
the CFG file, one always assumes that the configuration is under PBC, with
a parallelopiped supercell defined by its three edge vectors (not necessarily
orthogonal to each other). The reason for enforcing the PBC requirement is
that, while it is quite easy to express a cluster configuration as a PBC config-
uration by putting a large enough PBC box around it, therefore separating the
periodic images by vacuum, it is not so easy the other way around. To define a
PBC configuration, a minimum of 3N + 9 real numbers needs to be supplied,
where N is the number of atoms. First, one must specify a 3× 3 matrix,

H =


 H11 H12 H13

H21 H22 H23

H31 H32 H33


, (1)

in the unit of angstrom (Å), which specifies the supercell size and shape.
AtomEye uses a row-based vector notation. That is, the first row of the H
matrix corresponds to the first edge (or basis) vector h1 of supercell, and
similarly for h2 and h3:

h1 ≡ (H11 H12 H13), h2 ≡ (H21 H22 H23), h3 ≡ (H31 H32 H33).

(2)

So, for instance, H23 is the z-component of the second edge vector of the
supercell (in Å). It is recommended that h1, h2, h3 constitute a right-handed
system, that is

(h1 × h2) · h3 = det(H) > 0, (3)

but it is not required.
The atom positions are specified in the CFG file by the socalled reduced

coordinates {si } instead of the Cartesian coordinates {xi }. Here i runs from 1
to N (in the program it actually runs from 0 to N − 1), and both si and xi are
1× 3 row vectors

si ≡ (si1 si2 si3) , xi ≡ (xi yi zi) . (4)

si1, si2, si3 are called reduced coordinates since

1. They are dimensionless, unlike xi , yi , zi which are in Å.
2. They are all between 0 and 1:

0 ≤ si1 < 1, 0 ≤ si2 < 1, 0 ≤ si3 < 1. (5)

xi and si are related by the matrix-vector product

xi = si H = si1h1 + si2h2 + si3h3. (6)
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Since h1, h2, and h3 are the three edges of the parallelopiped supercell, it is
seen that any point inside the supercell corresponds to si1, si2, si3 ∈ [0, 1),
and vice versa. Any image atom outside of the supercell can be expressed as
(si1 + l, si2 + m, si3 + n), in which l, m, n are all integers, which is separated
from the original atom xi by Cartesian distance lh1 + mh2 + nh3.

Knowing xi and H, one can also invert Eq. (6) to get si

si = xi H−1. (7)

If any of si1, si2, si3 /∈ [0, 1), the atom is outside of the supercell (i.e., it is an
image atom) and needs to be mapped back to the original supercell, by

siα → siα − 
siα� , α = 1, 2, 3, (8)

where 
·� is the floor function, returning the largest integer not greater than
the argument.

The reciprocal vectors of the supercell g1, g2, and g3 are the first, second
and third row vectors of the matrix

G ≡ 2π(H−1)T, (9)

and satisfy the fundamental relations

gαhT
β = 2πδαβ, α, β ∈ 1 · · · 3 (10)

Since g1 is normal to the plane spanned by h2 and h3, g2 is normal to the plane
spanned by h1 and h3, g3 is normal to the plane spanned by h1 and h2, it is
easy to see that the thicknesses of the supercell perpendicular to the three sets
of planes are

d1 =
2π

|g1| , d2 =
2π

|g2| , d3 =
2π

|g3| , (11)

respectively. It can be shown that a sphere of radius R can fit into one supercell
(without touching any of the six faces) if and only if

2R < min(d1, d2, d3). (12)

The above is important because it tells us whether a great simplification in
treating image interactions can be taken or not.

To appreciate this, let us suppose two atoms would interact or consider
each other their neighbor whenever their distance is less than rc. Given the
contents of the supercell, the physical system it represents is an infinite lattice
composed of infinitely tiled replicas of the original supercell. Theoretically, to
determine how many neighbors an atom xi in the original supercell has, one
needs to go over all atoms in nearby supercells. It is then possible that both
x j + lh1+mh2+ nh3 and x j + l ′h1+m ′h2+ n′h3 are neighbors of xi , which
is called multiple counting. There is nothing wrong with multiple counting,
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but this possibility makes the program more complicated and less efficient.
So a natural question is, under what conditions would multiple counting be
guaranteed to not occur, and one only has single counting? In other words,
when would any two atoms i and j in the original supercell have at most one
interaction even when all images of j are taken into account? To figure this
out, suppose xi is at the center of the original parallelopiped, si =

( 1
2 , 1

2 ,
1
2

)
. It

is then seen that if and only if

2rc < min(d1, d2, d3), (13)

can single counting be guaranteed for atom i , and all possible neighbors are
within the original supercell. One then realizes that this criterion does not
really care where atom i is. One can always define a shifted supercell (pos-
sibly containing some image atoms) with atom i at its center, that has one-to-
one correspondence with atoms 1 · · · N in the original supercell. So long as
Eq. (13) is satisfied, one only needs to loop over atoms 1 · · · N once to find
out all the neighbor of i , according to the formulas

Sij ≡ (Sij1 Sij2 Sij3), Sijα = Siα − S jα −
⌊

Siα − S jα + 1

2

⌋
, α = 1, 2, 3

(14)

xij ≡ sij H, rij ≡ |xij |. (15)

In the engine of AtomEye, condition (13) is assumed to hold, which is
often the case for configurations involved in empirical potential calculations.
However, configurations in ab initio calculations often do not satisfy (13). So,
when AtomEye loads in the configuration, if (13) is found to be unsatisfied,
the configuration is automatically replicated in the necessary direction(s) to
satisfy condition (13).

In the CFG file, the H matrix can be specified flexibly according to the
following formula

H = AH0

√
I+ 2ηT, (16)

where A, η and T are optional parameters, and I is the 3 × 3 identity matrix.
A is a scalar and has the meaning of the basic lengthscale of the configuration
in Å, and its default value is unity. η is a desired Lagrangian strain which is a
3× 3 symmetric matrix, and

√
I+ 2η is the affine transformation matrix that

achieves η without rotation (see Chap. 2.19); by default, η=0, the zero matrix.
Finally, T is an affine transformation matrix, which can contain a rotational
component; by default, T = I. When A, η and T all take their default values,
H = H0. So if one does not care about scaling and affine transformations, one
can just specify H by directly specifying H0 in Å, like

H0 =


1.8075 1.8075 0

1.8075 0 1.8075
0 1.8075 1.8075


, (17)
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for FCC Cu primitive cell with equilibrium lattice constant 3.615 Å. However,
it is perhaps better to set

H0 =


0.5 0.5 0

0.5 0 0.5
0 0.5 0.5


, (18)

but set A = 3.615. This way, if we want to create a series of configurations
with varying lattice parameters, we only need to change one number in the
CFG file. Optional η and T matrixes are supported for the same reason. If we
want to deform the entire configuration, we only need to change one or few
parameters in the CFG file. For instance,

T =


 1 0 0

0.5 1 0
0 0 1


 (19)

means effecting a simple shear such that ey → ey + 0.5ex with ex and ez

unchanged.
The main data block comes after various required and optional declara-

tions. There are N lines in the data block, one line for each atom. The first
three entries on each line are the si1, si2, si3 of that atom. Depending on the
declaration, there may or may not be three numbers following them that con-
tain the velocity information. The CFG file is extensible in the sense that there
is a supported way for the user to store extra atomic properties in the CFG
file. For example, one may wish to store the instantaneous force on each atom,
along with the positions. To do this, one can declare the existence of three
auxiliary properties

auxiliary[0] = f x[eV/Å]

auxiliary[1] = f y[eV/Å]

auxiliary[2] = f z[eV/Å],

that provide indexing (start from 0), property name, and unit information. One
then appends the auxiliary property data at the end of the line for each atom.
AtomEye can be used to interrogate atom by atom and to graphically repre-
sent these auxiliary properties with various threshold and colormap options
(see Fig. 3).

The CFG file (with recommended suffix “.cfg”) is meant to be readable
and editable by people, so it is in plain ASCII format. One can add com-
ments after “#”, which is also a way to store nonstandard information. All
data values can be specified to an arbitrary number of digits that the user deems
necessary. To compensate for the large size, the user may compress the CFG
file using gzip (recommended suffix “.cfg.gz”) or bzip2 (recommended suf-
fix “.cfg.bz2”). AtomEye can directly load in the compressed files, using an
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automatic recognition and decompression scheme. To simplify handling, one
CFG file should store one atomistic configuration only. A sequence of config-
urations should be named like “mdrun00001.cfg.gz”, “mdrun00002.cfg.gz”,
“mdrun00003.cfg.gz”, . . . , etc., with the starting identifier “mdrun” arbitrary.
AtomEye can recognize the above file name patterns automatically to deter-
mine a file group, with browsing forward, backward and loop-back capabili-
ties. This greatly facilitates inspecting MD trajectories.

AtomEye presently has three builtin functions to characterize the local
atomic environment

1. Coordination number {ki }. This counts the total number of first-nearest
neighbors each atom i has in a configuration (self excluded). Physically
it is of course a fuzzy concept, especially in liquids, where the sharp
shell structure of the crystal reference is largely smeared out. Procedure
wise, what is done in AtomEye is that there is a default radius value Ru

defined for each element species u. An atom i of species u would con-
sider an atom j of species v its first-nearest neighbor if their distance
rij (see Eq. (15)) is less than rc,uv ≡ Ru + Rv . By the above definition,
and by common sense, this relationship is reciprocal: that is, if atom i
considers atom j its first-nearest neighbor, then atom j would also
consider atom i its first-nearest neighbor.

The choice of the Ru default value is based on the following consid-
erations. The first is Slater’s empirical atomic radius tabulation based on
the equilibrium bond lengths in over 1200 ionic, metallic, and covalent
crystals and molecules [25]. The second is that in order for the procedure
to be maximally resistant to thermal noise at low T for the ground-state
phase perfect crystal, 2Ru should be set to approximately halfway be-
tween the first and the second atomic shells of the T = 0 perfect crystal.
(In liquids a similar choice would be to set 2Ru to the locate of the mini-
mum between the first and second maxima in the radial distribution func-
tion g(r).) This default rc,uv value however does not always work well in
practice, and the user can change it.

In AtomEye, {ki} is used as a versatile characterization of atomic
defects. Point defects (Fig. 4), dislocations, grain boundaries (Fig. 5),
etc. will often change the coordination number of atoms in their cores,
thereby allowing their conformations to be visualized. Often, to see the
defects, one also needs to render the “uninteresting” atoms invisible.
Here, the uninteresting atoms are identified as those whose ki remains
unchanged from the reference crystal value, such as 12 in FCC crystal.
Ctrl+shift+right-click on them will make them invisible.

2. Central symmetry parameter {ci}. There are some important defects in
crystals, such as stacking faults and twin boundaries, that do not
change the coordination number of atoms. But they can be identified by
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evaluating the degree of inversion symmetry breaking around each atom.
This is explained in the next section. An example is shown in Fig. 6,
where intrinsic stacking faults bound by Shockley partial dislocations in
FCC crystals are visualized.

3. Local von Mises shear strain invariant {ηi}. A reference-state free
measure of local atomic strain shear invariant has been derived for
high-symmetry crystals [26].

Furthermore, the user is free to devise his/her own local environment char-
acterization scheme, save the result as an auxiliary property (see Fig. 3) to
visualize it later on. One may also define a “color patch” file that accompanies
a CFG file to explicitly control how the atoms should be rendered. AtomEye
provides a suite of commands to survey and interrogate the configuration. One
can find out about atomic properties (auxiliaries included), bond length, bond
angle, surface normal, and dihedral angle by right-clicking on the atoms. One
may define a large number of simultaneous cutting planes, and shift the con-
figuration under PBC to expose the most interesting features. Finally, one can
put down color marking on the atoms in one configuration and track their
diffusive or displacive motion in the ensuing configurations, for example
during deformation.

3. Central Symmetry Parameter

The central symmetry parameter {ci }, i = 1 · · · N is used to characterize
the degree of inversion symmetry breaking in each atom’s local environment.
Especially, it is useful for visualizing planar faults in FCC and BCC crystals
[27]. We illustrate here how it is done.

Define integer constant M to be the maximum number of neighbors for the
computation of {ci}. For FCC lattice, we may want to use M = 12. For BCC
lattice, we may want to use M = 8. The computer of course does not know
whether the configuration is FCC- or BCC-based, so by default it is going to
use,

Mdefault ≡
⌊

kmost

2

⌋
× 2, (20)

where kmost is the most popular coordination number in the set {ki}, i = 1 · · · N
of the configuration. The user is able to override the default. But in any case,
M must be even as we will be counting pairs of atoms.

Now for each atom i ∈ 1 · · · N , define,

m̃i ≡ min(M, ki ). (21)

If m̃i = 0, ci ≡ 0 since an isolated atom should have perfect inversion sym-
metry. If m̃i = 1, ci ≡ 1, since a coordination-1 atom has no inversion image
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to compare with, so in a sense its inversion symmetry is the most broken. For
m̃i ≥ 2, define,

mi ≡
⌊

m̃i

2

⌋
× 2, (22)

and we use the following procedure to determine ci .

1. Sort the j = 1 · · · ki neighbors of atom i according to their distances |d j |
to atom i in ascending order. Pick the smallest mi -set.

2. Take the closest neighbor d1. Search, among the other mi − 1 neighbors,
the one that minimizes,

D̃ j ≡
∣∣d1 + d j

∣∣2
, (23)

and let us define,

j ′ ≡ arg min
j=2..mi

D̃ j , D1 ≡ D̃ j ′ . (24)

3. Throw atoms 1 and j ′ out of the set, and look for the closest neighbor
in the remaining set. Then repeat Step 2 until the set is empty. We then
have obtained D1, D2, .., Dmi /2. Define,

ci ≡
∑mi /2

k=1 Dk

2
∑mi

j=1 |d j |2 . (25)

Equation (25) is dimensionless. In the case of mi = 2, suppose the two
neighbors are independently randomly oriented, it is easy to show that the
mathematical expectation,

E[ci ] =
1

2
. (26)

On the other hand, we can prove that,

max{d j }
ci = 1, (27)

so this matches with the definition of ci ≡ 1 at m̃i = 1. But when mi � 2,

E[ci ] <
1

2
, (28)

because of the minimization process. For instance, at the intrinsic stacking
fault in FCC lattice ABC|BCA, there is a loss of inversion symmetry in the
two layers C|B, and ci is,

ci =
3× 0+ 3× (d

√
3/2× 1/3× 2)2

2× 12d2
=

1

24
≈ 0.0416, (29)

assuming perfect stacking.
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The good thing about expression (25) is that according to the Lindemann/
Gilvarry rule [28], a crystal melts when the atomic vibrational amplitudes
reach about ∼12% of the nearest neighbor distance, so ci for perfect crystal
should be < 0.01 even at finite temperature. Therefore, it is not very difficult
to threshold out thermal noise vs a true stacking fault.

4. Outlook

Atomistic visualization will become more widespread as suitable tech-
niques are developed and software tools are refined. In the future, we expect
distributed visualization of large data sets, like distributed number-crunching
on Beowulf clusters and grid computers, to become prevalent. In this paradigm,
the display node takes care of assembling the scenes and user input, while mul-
tiple nodes on a fast network perform data readout and render the scenes in the
background, for real-time navigation.
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