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Abstract

The criteria formulated by M. Bom for the onset of melting (1939) and lattice stability (1940)
are re-examined on the basis of more general considerations of elastic instabilities. With the aid
of molecular dynamics simulations, we show that (1) Born’s stability criteria are valid only in the
case of zero external stress, and (2) his thermoelastic melting criterion, with some modification,
is valid for the homogeneous process (mechanical melting or upper limit of superheating) which
can occur when the free-energy-based heterogeneous process (melting by nucleation and growth)
is kinetically suppressed. These and other related recent results on crack nucleation, pressure-
induced polymorphic transition and amorphization emphasize the fundamental role of elastic
instabilities in triggering unstable structural responses of homogeneous crystals.

1. Introduction

In 1939, Born set forth a simple criterion for crystal melting in which he postulated
that melting should be accompanied by the loss of shear rigidity [1]. Expressed in terms
of the shear modulus G for a cubic crystal, the melting point 7, is that temperature
at which

G(Ty)=0. (1)
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A vyear later he extended this concept to lattice deformation [2] by deriving the
well-known conditions for stability, valid for cubic crystals,

Ci1 +2C); >0, Ci—Cip>0, Cys >0, (2)

where Cyj, Ci2, and Cyq( = G) are the three distinct elastic constants (in Voigt notation).

The purpose of this discussion, contributed on the occasion of the 60th birthday
celebration of W.G. Hoover, is to examine the basis on which Born’s two criteria
may be considered to be valid. Shortly after (1) was proposed, experimental results
obtained on NaCl single crystals were presented showing that the two shear constants,
Css and (C1y — C2), have nonzero values at the melting point [3]. Moreover, it was not
clear how (1) could explain the presence of latent heat and volume change associated
with a first-order thermodynamic phase transition. The current status with regard to the
stability criteria (2) seems to be more ambiguous, neither stringent tests have been per-
formed nor qualifications discussed concerning its possible limitations. The challenge
of ascertaining whether such criteria are capable of predicting the actual onset of an
instability is considerable. The difficulty, on the theoretical side, has been that stability
analyses have been formulated in different ways [4], and few explicit calculations of
elastic constants at the critical condition have been reported to make an unambigu-
ous test possible. On the experimental side, competing effects frequently render the
determination of the triggering instability uncertain. It is fair to surmise that while the
shortcomings of (1) are well known, the predictive value of (2) has gone unscrutinized.

The approach we follow is to begin with the results of a corresponding set of
elastic stability criteria for homogeneous lattices under arbitrary but uniform external
load which we have recently derived [5,6]. Combining the new criteria, which may
be considered as generalizations of (2), with direct molecular dynamics simulation of
structural response of a perfect crystal to pure dilatation, we show that (2) is not valid
except for vanishing external stress. Instead of testing (1) using experimental data, we
propose next to analyze and simulate the process of isobaric heating to melting of a
perfect crystal without surfaces or defects of any kind, since for this case (2) would be
applicable if the heating were performed at zero pressure. As we will see below, sim-
ulation shows that at the onset of melting one of the shear constants indeed vanishes,
although it is (Cy; — C),) rather than Cy4. Moreover, the observed melting temperature,
or equivalently critical lattice strain, is in remarkable agreement with the predictions
based on the new criteria. Since the system we analyze and simulate is a defect- and
surface-free lattice, the melting that is being observed here does not refer to the free-
energy-based heterogeneous process involving nucleation and growth. That process, if
not kinetically suppressed in simulation by virtue of elimination of all defects and sur-
faces, would set in at a lower temperature (the physical or actual melting point) and
preclude the melting process associated with an elastic instability. Allowing for these
modifications, we feel with some degree of justification that Born’s concept of thermo-
elastic mechanism of melting, which should be applied only to mechanical and not ther-
modynamic melting, has been reconciled with his lattice stability criteria, which now
should be understood to require generalization whenever the external stress is nonzero.
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2. Elastic stability criteria at finite load

Recently, we have derived the criteria for elastic stability of a homogenous crystal
under conditions of arbitrary external load [5,6]. The results are obtained systematically
by formulating a Gibbs integral which combines the change in the Helmholtz free
energy and the external work done during deformation; in this way one can see clearly
that Born’s derivation amounts to neglecting the contribution from the external work.
It therefore follows that predictions of critical load in general will depend on the
nature of the applied stress, in contrast to the criteria (2) which involve only the elastic
constants. On the other hand, it is useful to regard the new criteria as generalizations of
(2) in which the elastic constant tensor C is replaced by an elastic stiffness tensor B [7],

B=C+ 41, (3)

where the tensor A depends only on the applied stress @. For cubic crystals and in
the case of hydrostatic loading, ¢ = —PI, where I is the unit tensor and P >0 for
compression, the generalized stability criteria have the form [5,6,8]

Cii +2C2+P >0, Chh—Cia—2P>0, Cy—P>0. 4)

Even though (2) and (4) have very similar appearance, the presence of the external
stress obviously can alter the competition between the different modes of instability to
the extent that (2) and (4) lead to different predictions, qualitatively and quantitatively.

A simple but conclusive demonstration of the validity of (4) is to consider a closed-
packed lattice under pure dilatation (P < 0). Fig. 1 shows the variation with lattice
strain of the two moduli, By =(Cy; + 2C13)/3 and G’ =(C|, — C12)/2 in the case
of Born’s criteria (2), and Br =(Cy; + 2Cj; + P)/3 and G/ =(Cy; — C1; — 2P)/2 in
the case of the generalized criteria (4). The third modulus, that involving Cy4, 15 not
shown because it is not a competing mode of instability for this particular loading.
These results are obtained by molecular dynamics simulation using an interatomic po-
tential model for fcc Au [9] (details of the potential are of no interest in the present
discussion). The simulation cell is cubic and contains N =504 atoms, arranged in an
fee structure with periodic border conditions. Starting with the lattice parameter a set
at the equilibrium value ap (corresponding to zero pressure and minimum potential
energy) and temperature 7 = 500 K, we equilibrate the system at incrementally larger
values of g while maintaining constant temperature by velocity rescaling after every
time step.

It can be seen in Fig. 1 that one would predict on the basis of (2) that the system
would fail by the vanishing of the shear constant G’ (known as the Born instability) at
a critical strain around 1.025. On the other hand, according to (4) failure is predicted to
be caused by the vanishing of the bulk modulus By (known as the spinodal instability)
at a critical strain (extrapolated) of 1.059. To see which prediction is correct, we have
run the simulations up to the point of failure by dilatation. What was observed was
that at a strain of 1.053 the system responded abruptly by a sudden release of internal
stress with a corresponding lowering of the enthalpy, both being consequences of lattice



J. Wang et al.| Physica A 240 (1997) 396—403 399

0.5 1.8
L
BT 16
0.4 > 14
— -1.2 oo
8 43 )
= - 1.0~
p> N
~ - 0.8 8—
0.2 I
© L 06 =
O-I "0.4
G rO.Z
0.0| T T T T v T T T L EEAR R | v T T T v 00
1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10
a/ao

Fig. 1. Variation of elastic moduli B7 and G’ with lattice strain a/ay in an fec lattice under pure dilatation,
where a is the lattice parameter at temperature T and ag is the value at 7 =0 K. Open and closed symbols
denote results from (2) and (4), respectively. Solid lines are linear extrapolations to give critical values for
each instability. Arrow indicates the critical strain observed by direct simulation.

decohesion in the form of cavitation. Thus, the validity of the generalized criteria (4)
is clearly established. It also follows from our finding that Bomn’s criteria (2) should
not be used to determine the theoretical strength of a crystal [10,11].

3. Isobaric heating to melting at P =0

Given that the generalized criteria (4) obviously reduce to Born’s results in the limit
of zero load, then (2) is a valid description of lattice stability in the special case
of a cubic crystal being heated to melting at zero pressure. This process is of interest
because it can be studied by molecular dynamics simulation in a straightforward manner
and the results would provide a clean test of the melting hypothesis stated in (1). For
the simulation we use the same model already described except that the simulation
cell now contains N = 1372 atoms and periodic border conditions are imposed in the
manner of Parrinello and Rahman [12]. A series of isobaric-isothermal simulations
(with velocity rescaling) are carried out at various temperatures. At each temperature
the atomic trajectories generated are used to compute the elastic constants at the current
state using appropriate fluctuation formulas [13].

Fig. 2 shows the variation with temperature of the lattice strain a/ay along the three
cubic symmetry directions. The slight increase with increasing temperature merely in-
dicates the lattice is expanding normally with temperature, and the results for the three
directions are the same as they should be. At 7= 1350K one sees a sharp bifurcation



400 J. Wang et al. | Physica A 240 (1997) 396403

1.2 TTrrJyyrre[ryrop ryrrrrrrrrrrrrrt

o ]
< 4
~

ot L 4
< 096 | \ N
[ —e—a/a \ ]
L x 0 .
088 [ —E -afa \ ]
[ --&--a/a & 1
0.8 -4 TS ATV IR IR AT B S A BT ETS T BV ET AT T ENRE N T A S i

0 200 400 600 800 1000 1200 1400 1600

T (K)

Fig. 2. Variation of lattice strain @/ay with temperature along three Cartesian directions in the simulation of
an isobaric (P = 0) heating process.
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Fig. 3. Variation of Br,G, and G’ with lattice strain a/ag in the isobaric (P =0) heating process.

in the lattice dimension where the system elongates in two directions and contracts
in the third. This is a clear sign of symmetry change, from cubic to tetragonal. To
see whether the simulation results are in agreement with the prediction based on (2),
we show in Fig. 3 the variation of the elastic moduli with temperature, or equiva-
lently with lattice strain in view of the one-to-one correspondence shown in Fig.2; the
three moduli of interest are the bulk modulus Br =(C), + 2C)2)/3, tetragonal shear
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Fig. 4. Time responses of (a) lattice strain along three initially cubic directions, (b) of-diagonal elements of
the cell matrix H, H\3, H13, H3, (¢) normalized system volume. Arrows indicate the onset of Born instability
in (a), shear instability in (b), and lattice decohesion in (c).
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modulus G’ =(Cy; — C13)/2, and rhombohedral shear modulus G = Cy4. On the basis of
Fig. 3 one would predict the incipient instability to be the vanishing of G’, occurring
at the theoretical or predicted lattice strain of (a/agp), = 1.025. From the simulation
at T=1350 the observed strain is (a/ag)eps = 1.024. Thus, we can conclude that the
vanishing of tetragonal shear is responsible for the structural behavior.

For more details of the system behavior at 7 = 1350 K we show in Fig. 4 the time
evolution of the lattice strain, the off-diagonal elements of the cell matrix /, and
the system volume. It is clear from Fig. 4(a) that the onset of the G’ =0 instability
triggers both a shear (cf. Fig. 4(b)) and a lattice decohesion (Fig. 4(c)), the latter
providing the characteristic volume expansion associated with melting. This sequence
of behavior, which has not been recognized previously, implies that the signature of
a first-order transition, namely, latent volume change, is not necessarily associated with
the incipient instability. Our results also provide evidence supporting Born’s picture of
melting being driven by a thermoelastic instability [1], recently reinterpreted by Boyer
to involve a combination of loss of shear rigidity and vanishing of the compressibility
[14]. Moreover, it is essential to recognize that this thermoelastic mechanism can only
be applied to the process of mechanical instability (homogeneous melting) of a crystal
lattice without defects, and not to the coexistence of solid and liquid phases at a specific
temperature (heterogeneous melting) [15,16].

4. Implications and perspective

It is perhaps worthwhile restating what the combination of stability analysis and
molecular dynamics simulation has contributed to the understanding of Born’s two cri-
teria. That the stability criteria (2) are valid only under vanishing external load is quite
clear, both theoretically and in simulation studies. Since it is often advantageous to be
able to predict a priori the critical stress or strain for the onset of instability, the avail-
ability of (4) could facilitate more quantitative analysis of simulation results. Although
our results for an fcc lattice with metallic interactions show that homogeneous melting
is triggered by G’ =0 and not (1), nevertheless, they constitute clear-cut evidence that
a shear instability is responsible for initiating the transition. The fact that simulation re-
veals a sequence of responses apparently linked to the competing modes of instabilities
(cf. Fig. 4) implies that it is no longer necessary to explain all the known character-
istic features of melting on the basis of the vanishing of a single modulus. In other
words, independent of whether G’ =0 is the initiating mechanism, the system will in
any event undergo volume change and latent heat release in sufficiently rapid order (on
the time scale of physical observation) that these processes are all identified as part of
the melting phenomenon. Generalizing this observation further, one may entertain the
notion of a hierarchy of interrelated stability catastrophes of different origins, elastic,
thermodynamic, vibrational, and entropic [17].

Finally, it may be mentioned that in several recent studies, the stability criteria
(4) have led to precise identifications of the elastic instability triggering a particular
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structural transition. In hydrostatic compression of Si, the instability which causes the
transition from diamond cubic to f-tin structure is the vanishing of G'(P)=(C;, —
C\,—2P)/2 [18]. In contrast, compression of crystalline SiC in the zinc blende structure
results in an amorphization transition associated with the vanishing of G(P)= Cyy — P
[19]. For behavior under tension, crack nucleation in SiC [20] and cavitation in a
model binary intermetallic [21], both triggered by the spinodal instability, vanishing
of Br(P)=(Cy + 2C\; + P)/3, are results which are analogous to the observations
reported here. Notice also that in the present study a crossover from spinodal to shear
instability can take place at sufficiently high temperature [6].
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