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I. STRESS, STRAIN AND ELASTIC CONSTANTS

Stress and strain have many definitions. Although how they are defined doesn’t actually
change the physics, there are differences in effectiveness.

Strain should be a relative quantity. Before defining strains, we must first declare the
reference state. That’s reasonable because strain depicts deformation. Strain should also be
rotationally invariant, as how much an object is deformed doesn’t depend on the angle we
look at it. From now on we’ll specify the configuration of an object using configurational
variable X,Y or Z, which tells the shape of the material, i.e., its surface constraints. The
deformation of an object from one configuration to the other is specified by the deformation
gradiant J, usually Y = JX. The deformation is assumed to be macroscopically homoge-
neous, i.e., the surface constraints of that object change uniformly according to J. However,
it doesn’t have to be a microscopically homogeneous process as different types of atoms on
each sublattices may have different atomic-scale relaxations.

Let X be deformed into Y: Y = JX. The Lagrangian strain is defined to be
y _ 1 o

Here superscript 7' means transpose. The X in n¥ is to denote the reference state and Y to
denote the final state. When the final state is clear we’ll omit the superscript and simply
write as nx. The polar decomposition theorem states that every matrix can be uniquely

decomposed into the product of its symmetric part and its rotational part,

J=RM =ML

M" =M, R"FR=L"L=1

So
Ny = %(JTJ 1= %(MQ ) (1.3)

and so
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M=,/1+2nX:1+nX—§n§(+... (1.4)

We see that there is a one to one correspondence between the Lagrangian strain and the
symmetric part of the deformation gradiant J.

Let Y =JX, Z=KY = KJX. There is
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which is the law of transformation between reference systems.

Contary to strain, stress should be defined as an absolute quantity, which means it
shouldn’t depend on any reference state. We’ll use two kinds of stresses in this paper: the
first kind is the outside stress 7;;, which is just the conventional “force per area” tensor used

in engineering:

7;; is the thermodynamic field that the outside world applies onto the object. To avoid
macroscopic rotation, it should satisfy 7;; = 7;;.
The second kind of stress is the thermodynamic stress ¢;;, whose definition depends on

the Helmholtz free energy of the system:

F(N,T,X)=E —TS

=—kgTInZ(N, T, X) (1.7)
with

Z=/Xe><p(—ﬁ7i(qN,pN))qude (1.8)



Here F' is a function of particle number N, temperature 7', and configurational variable
(surface constraints) X. Since the Hamiltonian #(¢",p") is usually rotationally invariant,

F will be rotationally invariant. Thus,

F(N,T,Y)= F(N,T,JX)
= F(N,T,RMX)
= F(N,T,MX)

= F(N,T,/1+ 2nxX)

= F(N,T,nyx, X) (1.9)

i.e., F'is a function of the Lagrangian strain nx once the reference state X is specified. We
can always expand a function of nx into its Taylor series:

oF
oni;

Fnx, X) = F(0,X) + ( )mi

nx=0

)Uz’jnkz + ... (1.10)
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Because 7;; is symmetric, the actual expansion should have only 6 independent variables:
M1, N22, N33, M2, M3, Ne3- However, it would cause confusion when summing over Cartesian
indices, so what we do is to symmetrize the coefficients over n;; and n;; whenever possible, but
treat 7;; and 7;; as seperate summation variables. Define 2nd and 4th rank symmetrization

operators:

S2(Gij) = = (Gij + Gji) (1.11)
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1
Si(Hijr) = Z(Hz'jkl + Hijig + Hjiry + Hjax,) (1.12)

The thermodynamic stress at configuration X is defined to be

8F(’I7x, X)
877ij

1(X) = gy o ) (1.13)

nx =0

and the elastic constant:

Cijn(X) =

QX) N i om

) (1.14)

nx=0



Here 2(X) is the volume of the object at X, so ¢;;(X) and Cjj(X) are made intensive

quantities. From definition we can see that:

1
F(nx, X) = Fo + Q(X){ts;(X)ny; + §Cijkl(X)77z'mkz}---

tij = tji, Cij = Cijie = Cjirr = Clit- (1.15)

Note that since t;; and Cj;i; are only expansion coefficients of F(nx, X) at ny = 0, they
themselves are not functions of 7y, but only of X. This is to say that the definition of
thermodynamic stress and elastic constants do not require a reference state, because when
evaluating these quantities the configuration always use itself at that instant to be the
reference state. This frame-moving reference system will bring in uncommon properties, as

theorized in tensor analysis and geometry. For instance
ti(Y) # ti5(X) + Cigra(X) (X )t + -

in contrast to what would have been expected for the expansion of “first order derivatives”

in terms of “second order derivatives” in a fixed frame. In fact, since

F(Z)=F(ny,Y)
= F(Y) + Q) Tr(¢(Y)n) + ... (1.16)
= F(n%, X)
= F(X) + Q(X)Tr (t(X)n%)

L)

Tr(n)Z(C(X)n)Z() + ... (1.17)
take (1.5) into (1.17) and keep the linear orders of nZ, we have

F(Z) = const + Q(X)Tr(JH(X)J"nf)

+QX) T (JC(X)nk I n?) + ... (1.18)

Comparing the coefficients of nZ with (1.16) and to first order accuracy in (J — 1), we have

_JH(X)JT

t(Y) = W+C(X)n§+... (1.19)



It will be shown later that (1.19) can be evaluted in symmetric deformation space to give

the correct expansion
tii(Y) = ti;(X) + By (X) (nx )k + - (1.20)

where B, (X) is the elastic stiffness coefficient.

II. FLUCTUATION FORMULA AND 0°K ELASTIC CONSTANTS

Expressions in terms of particle motion for thermodynamic stress and elastic constants
can be derived in a straightforward manner®!?. The partition function for a deformed system
is

Z=2(X,M)= [ exp(~fH(",5")dq" dp",

and in general

N T f)
@, p") =2 ; + V(@ @, -, an) (2.1)
n—1
then under a canonical transformation (q, = Mq,,p, = M~ 'p,), the Hamiltonian is
transformed into:
N _Tpr—2
P, M "pn
H(g",pY) =) o —
( ) n; o
Using (1.4) and also
P Inx +4An% + ... (2.3)
1+ 2nx X

the partition function can be written as:

N T _ 4 2
20X mx) = [ expl-ppy PeU T AR |y (g S gV ap (2.4)
n=1 n

Using tensor notation 7;; for matrix nx:
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/ ; exp( (—=BH)dg" dp™ (2.5)
where
T 2
N N pn(]' —2nx +40%)Pn
1
+V (1 +nx = 5m3)e"),
and

_OH _ i P} (=0jk + 4mjk) P
Mij =1 M
(Gir — i) g ViV (1 + nx)q").

(2.6)

Here n denotes particles. Variables which don’t not appear on the left hand side of the
equation are dummy summation variables on the right hand side, ranging from 1 to 3.
Set nx to zero, and we get the formula for thermodynamic stress:

= (ar s (5 22 + o)) (2.7

The () means ensemble averaging in the original configuration X.

Readers may wonder why (2.7) doesn’t give constant result 0 at 0°K, since V7V (¢") = 0
for bulk atoms. The answer is that if we were to calculate the stress using (2.7) directly,
we must count those atoms on the surface, whose equilibrium condition F}* + V?V(qN )=0
requires extra force F}', exerted by the wall. Since weighted by ¢}, this surface contri-
bution doesn’t vanish in the thermodynamic limit, unlike other quantities such as surface
energy. One the other hand, it’s obvious to us that stress originates from the bulk, and
is accumulative. This can be shown since V(¢") generally is the sum of local interac-
tions, for instance V(¢V) = > tmn} W (@5 Gm» @n), where W is a 3-body potential. Since
W(q + 6, qm + 0, ¢, + 6) = W(qi, @, @n), we have VW + VW + VW = 0 and the con-

tribution from this local interaction to the total stress is (¢ — ') VEW + (¢* — ¢]") VW,



which’s accumulative. This localization procedure can and should be done as soon as the
model potential becomes known.

To get the formula for elastic constants, we need to further differentiate (2.5):

0*F 5ng N N
377ij577kl Z / ( Tkl) exp(—FH)dg"dp" + 7 (/ T exp(=fH)dq"dp ><T”>
oT;;

= B{(Ti;){Tr) — (TijTw)} + <377kz

) (2.8)

From (2.6) we can get:

0Ty _§~Wivks | (2.9)
a’r/k:l nx= n=1 n

Z {ara?Vi'viV(eY) — sugi ViV (™)}

m,n=1

So we get the unsymmetrized form of elastic constants:

Dijre = BUX) ((tij) (tre) — (tijtas)) +

1 X apipp
Q(X) <nzl P b5) + (2.10)
Z a'q' V"V ZqZV” Oir)
myn=1

The first term is defined as the fluctuation term, while the last term is defined as the Born

term, usually written as CJ ik~ Lhe elastic constant is therefore
Cijkr = Sa(Dijnr) (2.11)

and the expression is valid for finite temperature and stress.

It is interesting to look at the zero temperature limit of the first term in (2.10), because
as we approach 0°K the fluctuation will become very small, and the statistical error of
evaluating two contrasting limits will become high. The school starting from Born and
Huang® study the 0°K elastic constants from a different stand point: since F' =V at 0°K,
they directly evaluate the 2nd order derivatives in total potential energy due to deformation,
with the constraint that it’s always at potential energy minimum. After careful calculations

the formula was derived®, by which the 0°K elastic constants can be sought from lattice

8



sum. Here we give a new and more straightforward derivation, by seperating surface and
bulk atoms. The equivalence of the (2.9) at 0°K with this static result will be shown in the
Appendix, by directly taking the limit.

Seperate ¢ (total) into ¢° (surface) and ¢® (bulk) atoms. We know from our previous
discussion that they play different roles in expression (2.7): although accumulated mainly
by interactions between bulk atoms ¢?, it’s through ¢° that it is manifested. For bulk atoms

at equilibrium configuration X, there are

VAV (V)| , =0 (2.12)

qN

but it isn’t the case for surface atoms.

Define dynamical matrix D at X to be

= ) (2.13)
T 0g0g) |
Thus, we can do the quadratic expansion
V(gM)=V (") +VV(g") (¢ ")
1 _ _
+5(@" =¢")'D(¢" — ") + ... (2.14)

sometimes we use D% and D to denote interaction between bulk-bulk or total-bulk atoms.

The free energy at 0°K is the minimized potential energy:

F(M,X)= min {V(¢")} (2.15)

{gNeM X}

In order to study the M dependence of F', we can either put a variable potential barrier
W (gN; MX) and minimize V + W with respect to the entire ¢", or directly go through
localization and coordinate transformation procedures. A very simple approach, however, is
just to “stick” the surface atoms on transparent walls, and minimize with respect to bulk
atoms. We know from experience that the actual surface state doesn’t affect bulk properties
in thermodynamic limit. Here although surface atoms are not allowed to relax, the method

will still give the correct general expression. And we achieve good intuition.
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Denote nx by matrix 1. Since traction are given to surface atoms

¢® =M3@ =q° +n3° —n°¢®
(2.16)
¢® =Mq” +1% =q" +n¢” + 1% + O(n?)
where in addition to uniform traction, the bulk atoms are allowed to relax by rZ. It’ll be

shown later that r% oc 7.
And so,
F(M,X) = gn,is,r}l{V(qS; ")}
. _ s 1 4 6 _
=min{V(@ + 07" — 5n°0"30" +ng” +17)}

N 1 ,_ 1, _ _
=V(¢")+V°V - (ng° - §n2q5) + §(qN)TnanN

1
+ ?11131} {(@")'nD%r®? + §(rB)TD“'rB P (2.17)

where we had used the fact that VBV (") = 0, and so first-order expansion for Mg? would
be enough.

The minimum obviously happens at
(@)TyD" + (+B)TD® = 0 (2.18)
and so
rB= _(D")"'D¥yg" (2.19)
xn
And so to 2nd order in 7, the relaxed total energy is
Fln, X) = Vig") + V¥V -ng® — SV g’
+%(§N)T17DWN - %(@N)TTID”(DI”’)ID“WN (2.20)

where the last term results from relaxation. Then we can evaluate the unsymmetrized t(X)

and C(X) using definition (1.13), (1.14)

10



VeIV (dY) 1

= = N 2.21
) = "5~ = agy T (2:21)

where we define the total stress functional T(¢") to be
T(q") = ¢"VV (") (2:22)

which is the same as what’s defined in (2.7) at finite temperature. We can see that the

relaxation process doesn’t alter the stress expression because it’s first-order derivative.

Then

C(X) = ﬁ{(qN)TDqN T

_(qN)TDtb(Dbb)—lDbth} (2-23)
the first two terms are identified to be the 7" = 0 Born term, while the last one corresponds

to relaxation. To eliminate the surface entirely from our derivation, we observe that

OT(¢")
0qB

_ 9(¢"VV(g"))
Py dq® v

— VB(qN)‘qN +qNDtb

= D"g" (2.24)
and so if we define matrix constant
OT;;(gN
Az’j,mc = M (225)

which could be evaluated in any localized model, we will have

Ciju(X) = CJy(X) + CFL(X) (2.26)
1
= —Q(X) {qznq_;'anl,nj - Tkjéil — Ai]'amCD;zi,ndAkl,nd}

which yet need to be symmetrized. This expression is exactly the same as Martin’s result?,
and is valid under general stressed condition.
The mentioned relaxation process doesn’t happen in regular monoatomic crystals, as

well as for crystals with inversion symmetry'2. This can be proven by (2.19), since both
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D and 71 are even under inversion, while gV is odd, so r? = 0. It would be interesting

to have some group-theoretical conclusions about Cfy; for other types of symmetries. We
have a simple tested example, where elastic constants for SiC (zinc-blende structure) were
calculated using the fluctuation formula, with Cf; identified as the fluctuation term in
(2.10) (see Appendix). Long enough MD runs were taken to ensure numerical convergence,
at the classical temperature of about 2°K. What happens is that CE = CE = 0, but CE
gives finite value, counting for about 20% of the total C'yy. A drawing of the crystal structure

at three different deformation modes will immediately show why. The combined Born and

relaxation term agrees very well with results from direct MD stress-strain experiments.

ITI. DEFORMATION SPACE, (NT7) ENSEMBLE AND THE GIBBS INTEGRAL

All homogeneous deformations can be described by the movement of a configurational
variable in deformation space, in general a 9 dimensional space with origin at an arbitrarily
chosen reference state X. In this space any configuration can be represented by the de-
formation gradient J (relative to X). Morever, if there exists particular constraints which
allow us to uniquely determine J from 7y, then deformation space becomes 6 dimensional,
which we call unique to stress the fact that any configuration can be specified in terms of 7x
instead of J. As an example, in the Parrinello-Rahman method! for performing atomistic
simulation at constant stress, J is usually constrained to be symmetric. Because J in this

case can then be uniquely determined by nx from the equation

1
J:\/1+2nX:1+nX—§77§(+...

it is unique and we will give it a special name: symmetric deformation space.

There can be other unique deformation spaces. For instance, we can constrain J to be
always upper triangular: this case corresponds to deforming a cube while constraining one
edge on the z axis and one face on the xy plane. Thus J has 6 non-zero elements which can

also be uniquely determined by nx. The opposite of unique is called general.
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The classification of deformation space is necessary: because once we have some con-
straints on how J can be perturbed, there might be instability paths in general deformation
space, but which is forbidden in unique spaces. So when the general case is already unstable,
the unique case might still be stable in the same configuration.

Since every point in deformation space is either denoted by J or nx, we can treat it as a
9 or 6 dimensional vector instead of a 3 X 3 matrix. Define the inner product between two

vectors(matrices) in deformation space to be:

3
2
We have
A-B=B-A
A-(B+C)=A-B+A-C (3.2)
A-A>0

thus it has the properties of Euclidian space and the measure of distance beween vectors is
well defined.

The purpose of this paper is to study the stability behaviour of materials under finite
deformation. Obviously some kind of outside loading must be present. It turns out that the
accurate description of this loading condition is crucial to our stablity analysis because we
rely on 2nd-order expansions: thus the loading condition itself should be exactly determined
to at least 2nd order. A certain stability criterea is only for a certain loading condition.

From now on we’ll focus our attention on the so called (N7'7) ensemble, meaning constant
particle number N, constant temperature 7', and constant outside stress 7, which is defined
in previous section and commonly used in engineering. Before going further, the authors
want to make it clear that we choose this ensemble to be our model system not because we
have impeccable justifications for it, nor do we insist on using it if a better description for a
specific problem is available. Nevertheless, the approach we took here is universal and can be

applied onto any system once the loading condition is known, so that the virtual work integral
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can be written down. The (NT'7) ensemble is considered to be the appropriate carrier for
our discussion because it’s the most commonly used scenario, and leads to analytical results
quickly.

As a warning, we think that some researchers might be unsatisfied with the fact (as
we’ll show later) that (N7'7) ensemble is a dissipative system and no valid thermodynamic
potential exists: we want to say that (as far as in our knowledge) we are the ones to first
point out this feature clearly, not because we like it. On the other hand, this situation
enable us to set up an ad hoc theory based on thermodynamic driving force in deformation
space in the absence of a potential, and stability criterea derived from this formalism will
natually lead to the symmetrization of the B matrix, which in turn can be understood as
mapping a dissipative system onto an equivalent conservative system with a symmetric A.
This justifies the practical applicabilty of the (NT'7) stability criterea, because in realistic
situations when the 2nd order feature of a certain loading condition isn’t known, we can use
the (NT'T) criterea as a reasonable guess, which only requires input from the stress condition.
Since constant 7 does capture the main feature of many applications, we’'d expect the criterea
to be of some predictive value.

Let’s start from the beginning: there is a direct analogy between the commonly used
(NTP) ensemble and (NT'7) ensemble, in fact the former belongs to the latter. The ther-

modynamic potential for (NT P) ensemble is the Gibbs free energy
G=F(N,T,V)+ PV (3.3)

The stability criterea for this system is the requirement of convexity of V' under constant
thermodynamic field (NT'P). The term PV in (3.3) is just the virtual work integral. (The
significance of thermodynamic potentials come from the 2nd law of thermodynamics: dS >
0, and are generated by integrating the inequality under different constraint conditions.)
We'll get the corresponding virtual work term for (N7'7) ensemble.

Imagine a path [ in deformation space which starts from X and ends at Z. We want

to know the net work done by outside stress 7 when we reach Z if we deform the object

14



along this path. To calculate this, let Y to be any point on the path: ¥ = JX, and make a
small deformation: J — J +d0J. This would cause displacements on the surface area of this

material by du;, and the work done by 7 is then given by surface integral

oW = f{ Tij Mg 5UZdS
S

= /YV - (Téu)dV

ZQ(Y)Tija—Yj
. Tij (00u; | Odu;
=) F 57 + 57 (3.4)

Here du is the virtual displacement on the surface. Making use the fact that du = (§J)X =
8J - J7'Y, which leads to

SW = Q(Y)%(&]- T4 T 5T, (3.5)
and the fact that the differential of (1.1) is
1
Snx = §[JT<$J + (6J7)J] (3.6)

or

J TonxJ = %[(U A AR ¥ o
we obtain for the incremental (differential) work,
SW = Q) Tx(J 'rJ Tonx) (3.7)
The work done over the deformation path [ is therefore
AW (l) = /l Q) Te(J T Tdny) (3.8)

To examine system stability at configuration X we consider the difference between the

increase in Helmholtz free energy and the work done by outside stress,
AG(Y, )= AF(X,nx) — AW(I)

/l Tr(g(Y)dnx)
J3) - diix (39)
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with

oY) = ;7—2 Q)T (3.10)

We define AG to be the Gibbs integral in analogy with the Gibbs free energy, and
identify —¢(Y') as the Gibbs driving force, a vector field spanning deformation space whose
path integral has the meaning of work. However, we have to show that this “work” is path
independent to establish it as a potential. If it is, then everything is fine. If it’s not, and
yet we want to do something about the problem, we can go to the lower level and study
the properties of —¢(Y) as a force field around equilibrium position, to formulate an ad hoc
theory. In both cases the Gibbs driving force and its derivatives will play a central role.

Virtual work expression (3.8) is correct for general deformation spaces. However, when
J isn’t a function of nx it is not always convienient to use the form. Sometimes we use

another quantity
U=J-1 (3.11)
which fully describe the configuration and has 9 degrees of freedom, thus
nx = %{(1+UT)(1+U) —1} (3.12)

Differentiate (3.12) and take back into (3.9). Make use of the fact that g;; is a symmetric
matrix, we get the integral expression for general deformation space in U representation:
AG(Y, )= AF(X,nx) — AW ()
= [ Tr(g"(Y)dU
/l r(g*(Y)dU)
- / 7 (Y) - dU (3.13)
l

with

g'(Y)=g(1+UT)
OF

= {@ —-QY)J 'rJ Y1+ UT)
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IV. STABILITY ANALYSIS IN SYMMETRIC DEFORMATION SPACE

In this section and next we’ll study stability behaviours in symmetric deformation space,
which’s often used in computer simulation. Since there is a one to one correspondence be-
tween 7nx and J, the space is 6 dimensional and all related second-rank tensors(strain,stress)
can be treated as wvectors in space.

—¢(Y) is defined as the Gibbs driving force in view of (3.9). Under the metrics of the
space in which the forces are defined, —¢(Y") points to the direction of steepest descent of
the Gibbs integral, i.e, if a virtual move is made in ths same direction as —g(Y), the system
will have the most significant net loss combining the effect of decreasing its Helmholtz free
energy and letting work done by the outside world. So in a quasi-static process, the direction
—4¢(Y) is pointing at should the be the most likely direction of action for system at Y, and
its trajectory would be the flow line of this vector field. As an example, suppose we put a
point charge into an electric field and make such that it moves quasi-staticly, the trajectory
will follow the flow line of the electric field, although in order to do this, the electric field
doesn’t need to have a potential: V x E= 0.

The condition for equilibrium at X is simply the requirement of vanishing driving force:

oF
0(X)= [ -
j

= Q(X)[ti;(X) — 7]

—QY)(J T )il

=0 (4.1)
tij(X) = 7 (4.2)

which states the equality between thermodynamic stress and outside stress means equilib-
rium.
Suppose the system, initially at equilibrium: ¢(X) = 0, is perturbed to configuration Y

with corresponding strain ny. In view of (3.10) the first-order expansion for §(Y’) becomes
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9:;(Y)= gij(nx, X)

= Q(X) Bijrmgt + --- (4.3)

where

o(det |J|J;  rn Jit
Bijr = Cijm — (det |8 ;) (4.4)
Tkl nx=0,J=1

Since
PR T »
det |J| =14 Tr(nx) + ... (4.6)

(4.4) can be evaluated to give

Bijki = Cijki — OiiTij + 0irTji + 05Tik (4.7)

As n;; and nj; (nk and my) are not separate variables, we need to symmetrize (4.7) with

respect to the interchange of indices (i <> j) and (k <> [). Thus,

Bijki (4.8)

1
= Cijm + 5(52'197]'1 + 8Tt + STk + OjuTik — 20k1735)-

(4.8) is the expression defining the elastic stiffness coefficient? B. We can see that B does
not possess (ij) <> (kl) symmetry, so AG is path dependent in general, unless the applied
load is hydrostatic, i.e., 7; o d;;.

The physical meaning of (4.3) is that in deformation space the shape of force field around
the origin is described by the “second-rank tensor” B. Consider the following inner product

between two vectors

7ix is the displacement from the origin, —B7/x is the direction of driving force, thus the

most likely direction for system evolution, at point Y. If we can show that A > 0 for any 7jx,
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then in a quasi-static process the perturbed system will always be decreasing its distance
with the origin. And thus the system is stable. On the other hand if there exists an 7jx for
which A < 0, then a kinetic path could lead the system to instability.

Given that B is asymmetric in general, the stability of the system is governed by its

symmetrized counterpart,
L o7
A=3(B"+B) (4.10)
because

A= 7—7>X : B7_7>X
1
2

— 7 - (BY + B)7x (4.11)

for any vector 7jx. The stability criterion is then the requirement that all the eigenvalues of

A be positive. Stated another way, the system becomes unstable when
det |[A| =0 (4.12)

for the first time. We can also think of it as mapping a dissipative system unto its equivalent

conservative system with a symmetric effective A, after some coarse-graining.

V. IMPLEMENTATION IN SYMMETRIC DEFORMATION SPACE

In the actual implementation of the criterea, we use Voigt’s notation:

Original 45 (or kl): 11 22 33 23 13 12

Contracted notation: 1 2 3 4 5 6
As said before, symmetric deformation space has only 6 independent variables, but since
it’s easier to sum over Cartesian indices, we had always treated it as if we had 9. Time has
come to change back to explicitly 6 variables, because n;; and 7n;; are bound together and
an instability eigenmode which has 7;; # n;; is not possible. Please be reminded that when
we use Voigt’s notation the times of 7y (or 75, 76) appearing should be doubled because it

represent both 7o and 7.
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In general a 9 x 9 matrix (not necessarily (ij) <> (kl) symmetric, but has (i <> j) and

(k <> j7) symmetry), with row and column index arraying as {11, 22, 33, 12, 13, 23, 21, 31,

32}, contracts into a 6 x 6 matrix in Voigt’s notation in the following manner:

A B B
C DD
C DD

=

A 2B
2C 4D

Following this contraction rule, we can write down:

(5.1)

Bsys = Coxe + Wexs (5.2)
In view of (4.8), we get the general form of W:
T11 —T11 —T11 2719 2713 0
—T22 T22 —T22 2719 0 2793
—T33 —T33 T33 0 2713 27Ty3
0 0 —27'12 27’11 -+ 27’22 27’23 27’13
0 —27’13 0 27’23 27'11 + 27'33 27’12
—27'23 0 0 27’13 27’12 27—22 + 2’7’33
Because Wy is asymmetric,
1 T 1 T
A:E(B+B):C+§(W+W) (5.4)
SO
T11 —%(711'1‘722) —%(711 + T33) T12 T13 —T23
—%(7'11 + T22) T22 —%(7'22 + T33) T12 —T13 T23
—2(T11 + T33) —3 (720 + T33) T33 —Ti2 Ti3 To3
Agxe = Coxe + 2 2
T12 T12 —T12 2711 + 2799 2793 273
T13 —T13 T13 2793 2711 + 2733 2719
—To3 To3 To3 2713 2719 2790 + 2733
(5.5)
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A. Example 1: Hydrostatic Tension

Hydrostatic tension®® is the only case which retains the original symmetry of the crystal,

and with true Gibbs free energy. For crystals with cubic symmetry:

011 012 012

Cia Ci1 Cig
Ciz2 Ci2 Ci1
Cexe = (5.6)
4C
4C 4
4C 4
Let 711 = 9o = 733 = T and refer to (5.3), we get
T -T -T
-T T -T
-T -T T
AT
4T
4T
SO
Ciu+T Cio=T Ci2 =T
Cu—T 011+T Cm—T
Cio—=T Cio =T Cpy +T
Bsys = (5.8)
4(Cyu+T)
4(044 =+ T)
4(044 + T)
Just by inspection we can see that
Cu+T=0 (5.9)
011 - 012 —+ 2T = 0 (510)
Cii+2C-T=0 (5.11)
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are the three instability modes. The first one is 3-fold degenerate, and is called shear
instability because the crystal tends to change shape without changing volume. The second
one is 2-fold degenerate, and is defined as the Born instability: it shows that the material
will automatically break the symmetry by elongating in one direction and shrinking in the
other. The third one is defined as spinodal instability in the sense of weak bulk modulus,
this is the case where the material is collapsing as a whole, which happens in solid state

amorphization*.

B. Example 2: Uniaxial Tension

Impose uniaxial tension 777 = 7" on an originally cubic crystal. It will break the symme-

try, with
Ci1 Cia Cho
Ci2 Cy Cos
Cia Ca3 Cy
Coxe = (5.12)
4C
om
and
T -T -T
0 0 O
0 0 O
2T
2T
0
o)
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Cu+T Cio—1 Cp -1
Cia—% O Co3

2

C’12 -Z C’23 C’22

2

A6><6 =

From lower half of matrix we get two modes,

066:0
1
C44+§T:0

corresponding to the shear instability.

From the upper half we get one obvious mode

022 - C'23 =0

corresponding to the Born instability.

4Cy + 2T

(5.14)

4Cu + 2T

(5.15)

(5.16)

(5.17)

The last two modes are not obvious, but has to rely on this quadratic equation:

T
2(Cia — )2 = (Coa + Co3)(C11 + T) = 0

2

(5.18)

VI. STABILITY ANALYSIS IN GENERAL DEFORMATION SPACE

All arguments used in constructing the “A criterea” for symmetric deformation space

still hold for general deformation space, the only difference is that we have 9 degrees of

freedom, so we should use the representation of (3.13),

AG(Y, 1) = /l Tr(g*(Y)dU)

with
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g (Y)=9(1+U")

F

= {a_ —QY)J I TY1 +UT)

onx
It’s easy to show that

Jle——1-U+ (6.1)
=10 . .
JT=1-U"+.. (6.2)

det|J|=14+Tr(U) + ... (6.3)

and

1
nx= 5(JTJ -1)

1
The condition for equilibrium at X remains to be:

g (X)=g(1+UM)|,_
= Q(X) (1 (X) — 75)
=0 (6.5)
Suppose g*(X) = 0 and we want to do first order expansion for ¢*(Y’) near X. Since g

is first order itself, we can ignore the (1 + U”) term behind it. Thus

9~y (6.6)
and

gij =0F/onx —QY)JtrJ~"

~ QXN Cijrnme — UrrTij + UieTrj + TaUj }

o Q(X){%Cijkl(Ukl + Ui) — Ui + U T + TanUji }

= QX)) {Ci;uUkt — UTij + UsnTij + iUy } (6.7)

24



So
955 = QUX)BjUst + . (6.8)
with
Biji = Cijin — Tij0kt + Tjilik + Tadji (6.9)

Similiar to the arguments in symmetric deformation space, stability behaviour in general

deformation space is governed by
A* = (B* + (BY)T)/2 (6.10)
When
det |A*| =0 (6.11)

for the first time, the system become unstable. Note that A* is a 9 x 9 matrix.
As an observation, when a configuration is stable in general deformation space, i.e., none
of the eigenvalues of A* are negative, the configuration would be stable in all deformation

spaces.
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APPENDIX: ZERO TEMPERATURE LIMIT OF THE CANONICAL

FLUCTUATION FORMULA

We want to show that in the limit of 77— 0 the fluctuation formula (2.10) reduce to the
same result as (2.26). This conclusion was first arrived at by Lutsko!!, here we put down
more detailed derivation.

In the limit of 7 — 0, the second term in (2.10) will vanish because ((pl*)?) scales as
T. The third term just gives C;, the unrelaxed elastic constant. The limit of the first
line, the fluctuation term, is not yet obvious: but if one inspects (2.7), it could be seen that
the momentum part, —pj'p; /My, gives zero contribution to the fluctuation limit because its
magnitude scales as T', and it is also not correlated with the second term, ¢;'V7 V', which is

defined as T(¢") in (2.22). So there must be

Cijkl(X; T - 0) == Cf;kl + Ci?k:l’ (A]')
where
Cz'lj'kl = ﬂEI_POOﬂ«Ej)(Tkl) - <Tikal>)/Q(X)' (A2)

When T is small, the atomic displacements
Agt =q — @ (A3)

from equilibrium positions are also small, and so one is eligible to expand
N 3

ATy =Y AijmeAqgl + O(q*), (Ad4)

m=1c=1

following A’s definition in (2.25). Thus,
(T3 Th1) — (Ti)(Tha)

= g: 23: AijmeArna{AG AGR) + O((g*)). (A5)

m,n=1 c¢,d=1
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One can also expand the potential energy as (2.14) when Ag!’s are small. Except for
atoms near the wall, the probability distribution of atomic displacements approaches that

of Gaussian, with
dP = dq" exp(~BV (¢"))/Z (A6)
= dq" exp(—BDpmendAGTAGE /2 + O(AG*)) /2.
What we have in mind, essentially, is a saddle point expansion of the partition function in
order to get the leading order fluctuation amplitudes. The wall atoms, though having the
same problem of V;‘V(QN ) # 0 as which leads to the stress localization procedure in section

I1, is not a big problem here because unlike ¢, (Ag?) is always finite. For the bulk atoms,

one can show that

(Ag"Agg) = (BD)ena + OB, (A7)

which follows from the well-known identities

+o0 g _ (2m)N
[w IZIdOzZ exp(—éa Ka) = det | K (A8)
and
Oln(det |K|) K} .
where « is a vector and K is a Hermitian matrix.
So following (A2), (Ab) and (A7), there is
N 3
zgkl z Z AZ] mc mec, ndAkl nd/Q( ) (AlO)

m,n=1 ¢,d=1

same as what we derived in (2.26).

APPENDIX: FLUCTUATION FORMULAS IN MICRO-CANONICAL

ENSEMBLE

Let us consider systems of N identical particles with mass m, contained in a volume
described by geometrical configuration variable Y. Each system evolves according to the

Hamiltonian
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i

M) = 35 B v, (B1)

m
If we consider all such systems with total energy E, we have a micro-canonical ensemble.
From now on let us regard N as fixed. The appropriate thermodynamical potential for

micro-canonical ensemble is system entropy'*
S(B,Y) = kyln [ dg"dp"6(E - H(@",p")), (B2)
Y

with fundamental relations

198

T  OE

(B3)

)
Y
and

F(T,Y)=E-TS(E,Y). (B4)

One can integrate out the momentum degrees of freedom from (B2) as follows: consider
{p},n = 1.N,i = 1..3 as a large vector p with 3N components, then the total kinetic

energy K is simply p?/2m with p = |p|. Also, for a 3N-dimensional p hypersphere,

N 3
dp™ = ] I1 dpy, = Sanw®™dp (B5)
n=11¢=1
if all angles are integrated over, with S3y being a constant. Then,
/'ddepN5(E-?ﬂﬁNQpND
Y
= [ di" Ssnp™ " dpd(E — p*/2m — V(@)
Y
= / dg mp*N 2d(p*/2m)6(E — p?/2m — V (§V))
Y
= const X / dg K3N/271 (B6)
Y
where
K =E-V("), (B7)

and it is implicitly understood that the [, dg" integration is carried out in {K(¢") > 0, q, €

Y'} regions.
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Thus, it follows that for any symmetric homogeneous deformation Y = M X (see (1.1)

to (1.9)) from a certain reference configuration X,

S(E,Y = MX) (B8)

= const + NkgIndet |M| + kg InlI,
where
M= [dg"(E -V (Mq")™", (B9)

and ¢V are particle coordinates in “undeformed frame” whose bounds are independent of
M.
To get some flavor, let us derive the heat capacity at constant volume, Cy (really should

be Cy), using microcanonical ensemble samples. If we vary E (and T) in (B3),

0T _ o8
T2 QE?

§E (B10)

Y

and so

Cy = 6E/6T

0%S
_ g2/ 0»
S /<3E2y)

- Oln I1 2/ 0%In I1
- "B oE |y OE?2

In order to get microscopic expressions, let us vary E in (B9),

Y) . (B11)

oIl
9By
= (3N/2=1) [ dg™(E — V(Mg

(B12)

for 3N/2 — 1 > 0, because modifications of [ dg" integration bounds with E does not give
contributions as long as the integrand vanishes there. Since NV is usually much larger than

unity, we will not mention this boundary term from now on. Then,

1 _3lnH . B 1
T~ OF Y—(3N/2 (K™, (B13)
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where the () average is taken over microcanonical ensemble samples (or a single evolution
trajectory if the ergotic hypothesis holds). One can further differentiate (B13), and it is

straightforward to show that

A%In I1

SE |, = (BN/2=1)BN/2 - 2)(K )

—(3N/2 = 1)K )2 (B14)

And so combining (B13), (B14) and (B11), we arrive at a fluctuation formula for Cy that
can be directly evaluated in a MD or MC simulation®.

Now let me derive fluctuation formulas for the thermodynamic stress tensor ¢;;(X) and
the isothermal elastic constants Cjjx(X), defined in (1.15), using micro-canonical ensemble
samples. The reason is because t;;(X) and C;j;(X) are the more useful quantities in various
applications, although micro-canonical ensembles are easier to realize in MD. Except for the
S(E,Y) — F(T,Y) translation, the procedure is similar to what we did in section II using
canonical ensemble samples.

Imagine a homogeneous and symmetric deformation of the system Y = M X, which is
also uniquely determined by the small Lagrangian strain n = n¥% = (M? —1)/2. We are thus
eligible to write S(E,Y") as S(E,n,X) and F(T,Y) as F(T,n,X), and the dependence on
X is usually not explicitly stated. For finite 7, there is a correspondent change of energy
AFE if the temperature is to stay constant, as in (1.15). To get AFE, we can expand (B3)

around X,

0%S
E+—= n.+0OE*n* E B15
x +6E87']Z]77J+ ( 577’ 77)’ ( )

_»S

0= OF2

and thus

0*S 0*S

where we keep track of orders because we have to do a second order expansion later. And

ot (816

so, if we expand (B4), holding 7 fixed,
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0S oS T[ 028 0?S 0?8
AF=AE-TZ2| AE-1722] 5 -2 | -2 | o +2 AE)m,; + 22| (AR A
oS T[ 028 028 028
S Vo IR P R AE)n; + 22| (AE) AEY, 1, etc.

and plugging in (B16), we obtain

0S T[ 0%S 0?8 028 0%S
AF=-T—| ni— = |=—=——| — . i 3).
anij En] 2 lanijankl E <8E8mj 6E877M> / <8E2 X)] Thij "Ikl + o (77 )
(B18)
which, when compared with (1.15), suggests that
T L ([0S
tij(X) = — 5 , B19
=507 (75, (B19)
and
T 4 0?S
Ciju(X) = [— B20
Jkl( ) Q(X) * a%‘aﬁkl E ( )

s 25\ (7S |
3E677,] aEankl OFE? X '

In order to get microscopic expressions, we need to work with (B8) and (B9). First,

because

Indet |[M| =Trln M = Trln /1 + 27

= Trn — Trn” + O(n), (B21)

it is easy to show that

., (Olndet | M| )
Gy [ FREITN ) — B22
(P ) =, (B22)
and
. (0?Indet | M| )
S| ————— = —0;105 — 0yl ik- B23
! ( OnijOnk  n=o KL TRk (B23)

Secondly, because

K=E-V(@")=E-V(M¢")
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in (B9), where ¢" are particle coordinates “before deformation”, and referring to (1.4), we

have
@ = q +niq) — mymindr /2 + O (7). (B24)

It follows that

0K 5)% oV 9
= — L gt O B2
Onij oy K oq; ok (77 ) ’ (B25)

and so
0K 1%
T j B26
Oisln=o 07 |x" (B26)
and
62K 82V av
O 0Nkt In—=0 Agrogr an gl O |x 19 ( )

where |x means taking derivatives in undeformed state X, and as before I treated n as if
it has 9 independent components but will symmetrize the expressions in the end. Thus,

following (B8), (B9) and (B26),

oS

| = Vot + (B28)
/2 - i (G| a7 18,
and so
ti;(X) (B29)
_ 5;3;) 8 (Naij +(3N/2 - 1)<§1 Frgr /K)) ,

where the first term is clearly the “ideal gas” contribution and second term the Virial con-
tribution. (B29) is not very different from (2.7) formula for the canonical ensemble samples,
beside that the Virial contribution is scaled by the total kinetic energy K, which is a persis-
tent feature in micro-canonical ensemble expressions, reflecting the effect of constant total

energy constraint on fluctuations. Because in the limit of large /N the relative fluctuation
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of K is O(N~1/2), one only makes vanishingly small error in ¢;;(X) calculation even if (2.7)
expression is used for microcanonical ensemble samples. However, as we will show next, it
is not so for Cj;;(X) calculation, because (2.10) is a fluctuation formula, and the constant
total energy constraint severely distort fluctuations.

Following (B28), it is straightforward to show that

0%S

aEamj n=0

= /2 - 16N/ - kel (- 50| ) /8
~aNJ2 = 1l (~ 50| ) )R

— (3N/2 = 1)ksSs [(31\7/2 - 2)& Frg"JK?) —

N

(BN/2 = (X Fra) /K], (830)

n=1
Lastly, combining (B9), (B26) and (B27), it is not difficult to show that
O?In Tl
0N Ok In=0
= (3N/2 = 1) (3N/2 — (P g Firal"/ )

—(8N/2 = 1)(F'q} /| K)(F{"q"/ K)
_ (ﬂ
g7 0q |x

Gar + Fraidn) /), (B31)
and so, with (B8), (B13) and (B20), we arrive at

N K—l -1 R
W(@kaﬂ + 8q0) + (KNS,

N
aGat+ ) E"qgfsjl) /K)
n=1

Ciji(X) =

(>

LBN/2— 1) Frg KV Frgh KV

3%" an

n,m=1

~@N2 -2 X /R + (332

n,m=1

(K7 (550 k8 VQ) (385, —0/ ke V)
(3N/2 — 1)2[(3N/2 — 2)(K~2) — (3N/2 — 1){K—1)?]’
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1. Application to Hydrostatic Response
Consider mainly a liquid or gaseous system which cannot sustain static shear loading,
tij(X) = —Pé;j, (B33)
and the pressure P is only a function of system volume
P =P(T,Q). (B34)

The discussions will also apply to any solid system that has cubic symmetry and is under

hydrostatic loading. With that, one can define the isothermal bulk modulus

oP
Br =— B
and the volumetric thermal expansion coefficient
Oln €2
= . B36
x=—ar | (B36)

We want to seek relations between Br and Cjjx(X), such that we could use our fluctuation
formulas (B20) or (2.10). But before that, let us consider a seemingly irrelevant question:
does ideal gas has finite Cy4?

The intuitive answer is no, because ideal gas cannot provide shear stress no matter how

it is deformed. However, if one refers to (B32),

N(K=1~'  NkgT
BN/2-1)Q  Q

Ciya = Cogoz = (B37)

or work out the (2.10) expression for canonical ensembles using Gaussian variable contraction

rules:
(p?p;'n/m> = kT 0pmdij, (B38)

and thus
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(tijtkz) — (tij) (tr)

Qg > (pFp} /m) (i /m)) — (piwy [m) (il /m)

nym=1

QZ Z pzp?pznp;n/m2>linked

n,m=1

Q2 Z kBT2 5nm52k 5nm5]l+5nm61,l 5nm5]k)

n,m=1
NE3T?
= gz (Oudjt + 0udj), (B39)
and
o (o= Ai v}
S| (2 8i1) | = 2NksT (k051 + 6:611), (B40)
n=1 n

0 (2.10) turns out to be

NkgT

Cijri = T(5z’k5ﬂ + 6u0k) (B41)

for ideal gas, which can also be derived if one simply expands

Fiy (T, Q) = —kgTIn ( a \/%&TBT)J . (B42)

So, all analytical evidence indicate that ideal gas has non-zero Cyy, in fact on the same
order of magnitude as By and P. How can one compromise this with the intuition that ideal
gas can never have shear stress? The answer lies in the fact that Cjj;; is not the “derivative”
of t;; with strain, so te3 = 0 is not contradictory to Cys # 0. One should use the elastic
stiffness coefficients, B;jr(X), to relate stress with strain (see (1.20)).

Referring to (4.8), (B33), (B41) and ideal gas law

NkgT
Q 7

P(T,Q) = (B43)

one has

Biji(X)

1
= Cijm + 5(5%15;'1 + &jkti + dutjre + Otk — 20kitss)
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NkgT
= 7B[5ik5jl + 0k + Oki0ij —

Q
(Girdji + 5k0u + dudjk + 050k ) /2]
NkgT
= %5,-]-5“, (B44)

in perfect agreement with our intuition and what would happen if one just plugs (B43) into
(B33) and differentiate with respect to 7;;.
Since it is well established now that B;j;i; is the connection between stress and strain, let

us study the pressure response of the system to volumetric expansion when (B33) always

holds. Then
= —P =ty =t (B45)
and
1
M1 =12 = N33 = gAln Q, (B46)
SO
b 0P| _ ou
™ 7 omQlr  omQlr
= (Bi111 + Bi122 + Buiss)/3, (B47)
and since
Bijki = Cijii + P(8i0k1 — 0ir0jt — 0itdjk), (B48)
there is
Br = (Cy1 +2C15 + P)/3, (B49)

which can be directly evaluated using fluctuations formulas (B32) or (2.10).
Let us study the thermal behavior of such systems. The geometrical condition is now

only specified by one variable, €2,

S(E,Y) = S(B,Q), F(I,Y)=F(T,Q), (B50)
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whether it is genuinely so as in liquids, or only appears to be for a solid with high symme-
try under hydrostatic loading. In this case, one can recover from (B19) the fundamental
thermodynamical relation'*

oS

(B51)

)
E
and so

oP
aT |o

os| 251,)
_8_QE+T oT
P S o
T 0NOFE 0T
P 0%S
T

Q

Q

= 5+ Ol e, (B52)

Following (B30), there is

8?3259 - (3N/23§ s 5, [(3N/2 - 2)(;1 F,-q,/K*) — (3N/2 - 1)(7;1 F, - aqn/K) (K]

(B53)

and the fluctuation formula for Cy is already given in (B11).
Because of the functional identity

o oT
JoT'lp OP

opP

T

the volumetric thermal expansion coefficient is simply

100
T QaTlp

_ 19P| 99
~ QOT|adPlr

oP
- a—T‘Q/BT, (B55)

«

and so « can be calculated by (B35) and (B52).
Lastly, let us find the representation for Cp, the constant pressure heat capacity, defined

by
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oS
Cp=T— (B56)
and so
oS 0S| 092
-T2 = =
Cr o 00T |p
P
=Cy+ QTa
=Cy + QTa2BT, (B57)
where we used the Maxwell’s identity
0S oP
ol Il B
01 (B58)

and (B55). At this point we see that all thermodynamical derivatives are expressible in
terms of microscopic fluctuation formulas that can be directly evaluated in a single MD

simulation run.

APPENDIX: LOCALIZATION AND APPLICATION TO PAIR POTENTIAL

Expressions such as

)\ijkl = 1—\ijlcl - Hijk:l (Cl)
N
Z q;cnqnvmvn Z nvn zl
m,n=1 n=1

appearing in (2.10) and (B32) can be localized (see discussion in section II) through the
following procedure: we first note that A;j;; is linear in V. That is, if V = Vi + V3, then
Aijki 1s the sum of contribution only due to V; and contribution only due to V5. So we only
need to calculate each pair or triplet or n-let interaction, and in the end simply add their
contributions together.

Secondly, we need to show that the quantity to evaluate is in fact translationally invariant,

which means that if we make a rigid translation:

éln =dq, + a, (CQ)
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where a is the same for all particles, there is

=

ijkl

I
M=

PVIVA(G) 8

3
Il
—

I
NE

(g5 + ar) ViVi(g™)du

3
I
-

N
GVIVi(q™ )b + ar Y ViVi(eY)

|
hE

n=1 n=1
N
=Y ViVi(eV)du
n=1
= Ik, (C3)
since
N
Y ViVi(g¥) =0 (C4)
n=1

for any translationally invariant potential Vi (¢"). We can prove the same thing for
N
Lijw = Y ai'a’Vi'ViVi(a™)
m,n=1
by plugging in (C2) and grouping free indices. And so, it does not matter in which coordinate
frame \;j; is evaluated, and we can choose any frame that makes the evaluation simple, such
as by letting the origin sit on one particle.
For instance, if the particles interact via pair potential
N
V(") =3 W(da,a5) = > W(lda — qgl), (C5)
a<pf a<lp
then we can single out any interacting pair W (|q, — qg|), and choose our frame such that
qs = 0. Then, all terms in
AN = D G@GVIVIW — Y ¢ViWey
m,n=a, n=aua,l

cease to contribute except for m = n = «, and it is simply

AXijrr = @i ViV, W (q) — q.V;W (q)du (C6)
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where ¢ = |qo|, and we have simplified the two-body expression to a one-body expression.

Since
WW@:W%, (C7)
and
A A L L ALY (C8)
! ¢? ¢ q
there is
AXijki (C9)
. . 5. .
= QkGi (W"qj—gl - W'q]—gl + W'il> — W' %s,,
q q q q
and so
R WII W/
Se(ANijr1) = i 9k ( Z ?> ; (C10)

which is just the contribution to Born elastic constant (see (2.10) from this single pair of
interaction. One should remember that in this special coordinate frame g = 0, so g should
be replaced by q, — g in a general frame.

For instance, in the Lennard Jones pair potential'® for rare gas solids,

w«q>:4e[(g)u——(g)1, (c11)

one can show from (C10) that

Si(ANijkr) (C12)

. o 16 o 10
— . [672 (-) 192 (-) ] .
o q q

In general, one can always simplify a n body expression into a n — 1 body expression

using the above coordinate frame invariant observation.
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